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Abstract 
We compare two approaches for solving the large, sparse linear systems that arise in 

tomographic velocity inversion problems. When noise is present in the data, the system typically is 

inconsistent and quasi-overdetermined, and some form of regularization must be implemented to 

avoid the strong, undesired influence of small singular values dominating the solutions. First, a 

Bayesian ART (Algebraic Reconstruction Technique) algorithm is applied to the system where we 

solve for a set of model parameters and residuals simultaneously. Careful choice of relaxation 

parameters and smoothing filters insures convergence and acceptable results. This approach avoids 

the undesirable effects of implicit row weighting inherent in simple ART or SIRT  (Simultaneous 

Iterative Reconstruction Technique) applications. Second, a conjugate gradient approach is 

implemented via algorithm LSQR where regularization is achieved by augmenting the system with 

additional constraint equations which minimize the roughness of the model. Specifically, applied to 

a 3-dimensional tomographic inversion we constrain the second derivative (the Laplacian) to be 

zero within horizontal layers. Comparison on synthetic data reveals that these techniques produce 

nearly equivalent results. By applying these methods to local earthquake data in the vicinity of 

Mount St. Helens, Washington, we have produced a 3-dimensional, laterally varying velocity 

structure in the top 40 km of the crust which correlates well with known geological and geophysical 

features and delineates possible accumulation of magma beneath the crater.  
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Introduction 
Seismic tomography uses the travel time of elastic waves to probe the internal structure of 

the earth. It differs from traditional medical tomography in  four major aspects: 1) acoustic signals 

travel in highly curved raypaths in media that vary in 3-dimensions, 2) the travel time is a non-

linear  function of the velocity field ("velocity" field in the seismic sense is the scalar wave speed),  

3) when the sources are earthquakes, the  distribution of rays covering the target cannot be 

controlled and is often  highly inhomogeneous and 4) uncertainties in the travel time exist because 

the source location and origin time must be determined from the observations themselves. These 

differences indicate that special care must be  taken when techniques borrowed from the medical 

field are applied to seismic data. Specifically, due to the non-uniform distribution of sources and 

receivers, the convolutional techniques of inversion, common in medical tomography, are 

inapplicable in the seismic case and iterative approaches  are used instead. These are usually 

grouped in two camps: the algebraic techniques, typified by ART (Algebraic Reconstruction  

Technique) and its variants, and the projection methods, a name used for conjugate gradients and 

its variants. In this paper we introduce the usual approach to linearization used in seismic 

tomography and then we compare, with synthetic and real data, a specific application of these two  

approaches, namely a Bayesian form of ART [Herman et al., 1979] and the LSQR algorithm of 

Paige and Saunders [1982], and discuss the  relationship between the methods of regularization 

used for each.  Artzy et al. [1979] performed an early comparison of this sort on synthetic data and 

they found that conjugate gradient methods had superior convergence behavior over Richardson's 

method (also termed SIRT for   Simultaneous Iterative Reconstruction techniques), which is a 

variant of the ART techniques [Herman, 1980].  Scales [1987], Spakman and Nolet [1988], and 

Van der Sluis and Van der Vorst [1987] each made comparisons between SIRT, which is 

commonly used in geophysical applications [Dines and Lytle, 1979; Humphreys and Clayton, 1988; 

Nakanishi, 1985], and LSQR. They found that LSQR out performed  SIRT on synthetic data as 

well as on real data. In addition, Van der Sluis and Van der Vorst  argued that LSQR is preferred 

over SIRT due to inherent row weighting implicit in the SIRT algorithm.  In this study we have 

applied a simple variation of Bayesian ART which does not share the undesirable feature of 

implicit row weighting and also performs competitively with LSQR. Furthermore, in situations of 

non-standard regularization it may prove easier to implement than the LSQR routine. 
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To illustrate this comparison we have synthesized artificial data that simulates many 

characteristics of the distribution of real earthquake data in 2-dimensions. For a real data situation 

we use arrival time data from the western Washington network near Mount St. Helens, where the 

successful inversion of P-wave velocity fields has led to delineation of faults and magmatic 

accumulation in the region [Lees and Crosson, 1989]. 

Theory: Linearization and Discretization 
Under the approximations of geometrical optics, we assume that the time a seismic signal 

takes to travel from point A to point B (Figure 1.1), in a given  medium, is a function of the seismic 

velocity of the intervening  material and the path the wave traverses (the raypath). Determining the 

travel time, given the velocity, source and receiver locations, is  called the forward problem, written 

mathematically as 

 ∫=
ray

dr
xv

T
)(

1
 (1.1) 

where T is the travel time,  x is the spatial position vector,  v(x) is the value of the velocity field at 

position x, and dr is a  differential line element along the path from A to B.  The travel time is  thus 

the line integral of the inverse of the velocity along the ray-path.  Since the travel time T does not 

depend linearly on the velocity, v(x) , it is convenient to introduce the "slowness", s(x), where s(x) 

= 1/v(x) . Then our functional relationship between the travel  time and the model becomes, 

  (1.2) ∫=
ray

drxsT )(

Since the raypath itself depends on the velocity (slowness) the  problem is still non-linear. 

 

We consider the following perturbation  approach. Suppose the model, s(x), that we are 

seeking can be assumed to be a reference model, s0(x) , plus a small perturbation delta s(x), i.e. 

 )()()( 0 xxx sss δ+=  (1.3) 

Then, 

  (1.4) ∫ +=
ray

drssT )()(0 xx δ

Fermat's principle states that, to first order, the travel time is stationary with respect to small 

perturbations in the ray-path [Aki et al., 1977]. For small delta s(x) we can therefore integrate over 
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the raypath in the unperturbed model to  determine an approximation to the right hand side of 

equation (1.4).  If T0 is the travel time for the unperturbed model then, 

  ∫∫∫ +=+≈
000

)()()( 00
rayrayray

drsTdrsdrsT xxx δδ

or, rearranging, 

  ∫≈−=
0

)(0
ray

drsTTT xδδ

where δT is called the travel time residual. We now have a linear  relationship between the travel 

time residual observations, δT , and the slowness perturbations, δs. For simplicity in notation we 

drop the spatial dependence x from  our equations and refer to δs as simply s and δT as simply t,  

remembering that these are the slowness perturbations and residuals respectively.  

Using techniques borrowed from medical tomography we parameterize  the structure by 

partitioning it into small cells within which the  slowness perturbation is considered constant. The 

real slowness perturbation field sTRUE is thus approximated by the discrete version s , where it is 

assumed the blocks are chosen small enough such that  s ≈ sTRUE, and there is no aliasing of 

structure. The inverse problem is  then discretized by considering sums instead of integrals in 

equation (1.6). The travel time residual will be the sum of the slowness  perturbation in each cell 

times the length of the ray within that cell.  For many such observations we have, 

  (1.7) ∑
=

=
m

j
jnjn sat

1

where tn is the travel time residual  associated with the n-th ray, and  anj  is the length of the n-th ray 

in the j-th cell. In matrix notation this  can be expressed as, 

 Ast =  (1.8) 

where t is an n-row column vector of observations, A is an nxm matrix of coefficients describing 

the lengths of each ray in each cell, and s is the slowness  perturbation vector of length m. 

The "inverse problem" involves finding a solution s tilde which satisfies (1.8). If A†  is a 

generalized inverse of A, then s tilde = A†t is such a solution [Lanczos, 1961]. Typically n>m and 

the  system is said to be overdetermined, but the number of singular values of  the matrix A is 

generally less than m, and the system will be underconstrained. The problem is thus ill-posed and 
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the solution is not unique. We apply a common method of regularization for determining a unique 

solution by minimizing the functional 

 
222 sAst λφ +−=  (1.9) 

where λ is the trade-off parameter that regulates the relative  importance we assign to models that 

predict the data versus models that have a characteristic, a priori variance. 

The quality of the data depends on a variety of factors, one of which is the ability of an 

analyst or machine to pick the time of  arrival on the seismogram. For signals of high frequency 

this  can be done fairly consistently, but emergent signals have  low frequency components and 

picking the onset of the first arrival can be very difficult, involving a high  degree of uncertainty. 

Since we have more confidence in travel time picks that come from better quality data we wish to 

weight these data more heavily in the inversion process. The analyst who picks  the data estimates a 

confidence interval that represents the standard error of the pick about the mean.  Using these  

estimates we multiply each equation in (1.8) by 1/σi, where σi is the estimated uncertainty in the i-

th datum. In addition to simple row weighting we may anticipate covariances between  data points, 

as would be the case for several observations obtained from the same earthquake. If the covariance 

matrix of data is Cdata, then we form the weighting matrix 

  
2/1−= dataCW

The diagonal  elements of W are the weights for each equation, 1/σi, and the off-diagonal elements 

are the covariances  between the data values (which are typically not available). Equation (1.8) is 

transformed to: 

 WAsWt =  

In a similar fashion we may have a priori knowledge of the covariance of the model 

parameters. First, if we know in advance what the ray coverage is, we may weight blocks 

differently depending on the configuration of rays in the vicinity of the block. For instance, blocks 

that have heavy coverage may be weighted in such a way as to reflect the fact that we have more 

confidence in them as opposed to blocks that are lightly sampled. Second, we may have a priori 

knowledge of the geological structures in the subsurface, like the wavelength of typical features, 

the location of faults or the presence of specific buried features which we obtain from external 
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sources. In either case we can require that the solution have the desired covariance Cmodel  by 

considering a change of variables, 

  sCx 2/1−=

Then the system is replaced by 

  xWACWt 2/1=

Alternatively, a priori information can be introduced by forcing the system of equations in 

(1.8) to satisfy and additional, artificial set of equations, one for each model parameter: 

  (1.2) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
0
t

s
F
A
λ

We then minimize the functional, 

 
222 FsAst λφ +−=  (1.13) 

where, as before, λ is a trade-off parameter that regulates the relative importance one puts in 

minimization of the prediction error versus minimization of the variance of the model. If F=I, this 

expression leads to the minimization of the functional φ from equation (1.9), which is the 

Levenberg-Marquandt method of regularization. In our case we wish to impose a degree of 

smoothness on the model, and F will be a roughening matrix. 

 

Inversion Techniques: Bayesian ART 
 

As a first approach to finding a solution of (1.8) where we minimize (1.9) we apply a 

Bayesian  version of the simple ART (Kazcmarz' method) proposed by G.T. Herman [Herman, 

1980; Herman et al., 1979]. Since the system of equations in (1.8) is inconsistent we consider the 

system, 

 rAst +=  

where r is chosen such that given any s, r=t-As. This means that (2.1) is a well-posed problem and 

we will solve for s and r simultaneously. We form the following consistent system of equations, 

  (2.2) [ ] t
s
r

AλI =⎥
⎦

⎤
⎢
⎣

⎡
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whose solution minimizes φ in (1.9), [Herman, 1980]. Application of the simple ART algorithm to 

(2.2) yields the following modified algorithm: 

Bayesian ART Algorithm: 
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 (2.3) 

where ai is the i-the row of  A (ai
T is its transpose), êi is a unit vector with the i-th element set to 

one, ρk is a relaxation parameter used to stabilize convergence, λ is the regularization parameter of 

(1.13) when F=I, and K is the number of iterations. Notice that if there is no regularization, 

i.e. λ=0, this algorithm becomes Kazcmarz' simple ART algorithm. An important aspect of the 

introduction of regularization is that with λ≠0 the explicit weighting of (1.10) is retained where as 

with Kazcmarz' method there is implicit weighting  in (2.3)  (in effect, normalizing the rows to unit 

length) which may not be desirable [VanderSluis and VanderVorst, 1987]. The value of ρk may 

remain constant or it may change between iterations. In situations where we have allowed ρk to 

change we have used the following scheme: 

 
kk +

=
2

1

κ
κ

ρ  (2.4) 

where κ1 and κ2 are suitably chosen constants.  This way of decreasing ρk  is in accordance with  

the sufficient conditions required for convergence as outlined in Trummer [1981]. 

Smoothing is introduced by applying a low-pass filter after each iteration, i.e. after all the 

equations in the system have been used. In this study the updated version of the model is formed by 

taking a linear combination of the present version and the smoothed version, 

 ( ) smoothk
k

k
k sss Ψ+Ψ−←+ )()1( 1   

Such that the amount of smoothing can depend on the iteration (k) without changing the filter. Thus 

for the i-th element of s, 

Lees&Crosson, 1991 



  8 

  (2.5) ( ) ∑
=

+ Ψ+Ψ−←
m

j

k
jjk

k
k

k sa
1

)()()1( 1 ss

The reduction in smoothing is tied into the reduction of relaxation by multiplicative constant: 

 kk ρκ 3=Ψ  (2.6) 

such that the smoothness constraint does not dominate over reduction of data misfit. Smoothing 

between iterations is often called a "trick" in the literature [Herman, 1980] for two basic reasons. 

First, the smoothing procedure destroys the least squares nature of the solution, meaning the 

solution after smoothing is no longer one that uniquely minimizes (1.9). Second, the smoothing 

operation is applied to all the model parameters simultaneously, much like a SIRT iterative step, 

and thus does not fit mathematically into the ART inversion framework. Experience indicates that 

in spite of these difficulties, solutions obtained in this fashion are nearly identical to more 

analytical, least squares approaches. A comparison is provided in the next section. The advantage 

of using ART with tricks lies in its flexibility. For example, one could apply a nonlinear smoothing 

scheme to the images where the amount of smoothing depends on the image itself. This might even 

be applied in an interactive mode where the analyst adjusts smoothing or other parameters between 

iterations as needed. The ART approach also lends itself easily to robust inversion where the 

magnitude of the residual that is backprojected depends on the size of the residual itself. Again, 

applying these "tricks" implies a departure from strict least squares inversions. The desirability of 

this departure depends on the nature of the problem and data set. 

Conjugate Gradient - LSQR 
A different approach to solving equation  (1.8) has been suggested by Spackman and Nolet 

[1988] and Scales [1987].  Here we use an algorithm developed by Paige and Saunders [1982] 

called LSQR. It is based on Lanczos procedures  used to bidiagonalize the system of equations 

followed by a QR decomposition to obtain the solution. 

At each step the procedure can be shown to produce iterative approximations which are 

equivalent to conjugate gradient solutions, and so we call it conjugate gradients. The details of the 

method are outlined in Golub and Van Loan [1983], Spakman and Nolet [1988], and  Van der Sluis 

and Van der Vorst [1987]. 
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In this case we will implement regularization by augmenting the system in (1.8) by m 

additional  equations as in (1.12) where the matrix F is the second order differential operator 

applied in horizontal layers, i.e. the 2-dimensional Laplacian.  Using a first order discrete 

approximation for the second derivatives, this constraint corresponds to the following equation for 

the j-th block: 

 
( ) ( )

( ) 04
slownessadjacent slownessblock  *4

11 =+++−

=−−

−+−+

∑
njnjjjj xxxxx

thj
 

where n is the number of blocks on the side of the model. The result is a minimization of the 

roughness of the model as measured by the differential operator. A discussion of the use of 

differential operators as roughening constraints can be found in  Titterington [1985] and Constable 

et al. [1987], and the discrete Laplacian operator is introduced in Young [1971]. 

The equivalence of maximizing smoothness with ART and minimizing roughness with 

LSQR can be illustrated best in the spatial frequency domain. A (kx, ky) plot of the frequency 

response of the Laplacian filter is displayed in Figure 2a, where the high pass nature of the 

roughening operator is clearly evident. The inverse filter can be obtained by taking a suitably 

normalized spike and subtracting it from the Laplacian in the space domain [Crosson and Lees, 

1989]. The response of this filter is displayed in Figure 2b, and the result is a low-pass filter as 

expected. This low-pass filter, or one similar to it, was used for smoothing in the ART scheme 

outlined above. 

Resolution 
The resolution of the inversion is primarily a function of the ray distribution.  In the context 

of classical least squares, if  A  is the matrix that describes the way the rays sample the model 

blocks, the resolution matrix is   [Crosson, 1976].  For our modified version of 

least squares,  . However, the sheer volume of data  used in 

an inversion of this sort makes the calculation of the resolution matrix prohibitive. 

AAA)(AR T1T −=

( ) WAWAFFWAWAR TTTTT 12 −
+= λ

For this reason we resort to estimating the resolution by other means.  To accomplish this 

we examined the response of the system, that is ray coverage and inversion procedure, to spikes 

located in areas where resolution information was required. If the ray coverage over a region is 

relatively homogeneous and isotropic, the resolution kernels will be nearly identical for all blocks 
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in the region [Humphreys et al., 1984]. Ray coverage diagrams were thus used in conjunction with 

impulse responses to estimate  the resolution at critical regions in the target volume. 

Error Analysis 
For the same reasons outlined above, the model covariance matrix  is also unavailable from 

a practical standpoint. In this case we applied the statistical technique called "jackknife" [Efron, 

1982] to estimate the standard errors of model parameters. This approach is similar to the bootstrap 

technique suggested by Willmott et al. [1985]. The jackknife involves partitioning the data set into 

subsets, performing inversions on the subsets, and calculating a standard error from the set of 

image vectors that result [Efron, 1982; Mosteller and Tukey, 1977].  The process is described as 

follows.  Divide the data into k sets, with each set leaving out a random 1/kth portion of the data 

without replacement. Perform an  inversion for each of the k subsets and call the slowness image 

derived from such an inversion . Create from these "mini-inversions" a "pseudo-inversion" by 

forming the following linear combination: 

jŝ

 jallj sksks ˆ)1(ˆ~ −−=  

The jackknife estimate of the slowness is simply the average of the pseudo-inversions: 

 

 
k

s
s

k

∑
= 1

~
~  (3.2) 

which has variance, 

 
( )

)1(

~1~ 22

−

−
=
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kk

s
k

s j
ν  (3.3) 

From this the standard error  is Eσ = √ν. This will be an estimate of the variability of the 

model and can be used to project how large the errors are in each block of the target. Normally  k  

would be the number of rays in the data set, meaning, leaving out one ray for each pseudo-

inversion [Mosteller and Tukey, 1977]. However, this would involve performing thousands of 

inversions, a very time consuming operation. A compromise can be struck if we assume that the  

variability in the pseudo-inversions will be represented in far fewer partitions of the data. In this 

study, for example, only 30 partitions were used. The advantage of this statistical approach is that 
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we are using the data themselves to estimate the covariance and we have made no assumptions 

about how the data are distributed. 

Synthetic Phantom 
The comparison of the two approaches is illustrated by simulating seismic data on a 

synthetic phantom (model) and applying the methods to the data set. For speed and simplicity the 

synthetic is defined in two dimensions, however extension to three dimensions is straightforward. 

The phantom, consisting of a cross and a torus, is illustrated in Figure 3(a), where we use 

grayshades to represent levels of percent perturbation from the reference slowness. 20 stations 

(Figure 3(b)) are randomly distributed over the phantom and 236 sources are similarly distributed 

(Figure 3(c))  and connected to nearby stations in a fashion that simulates real earthquake data, 

resulting in 3000 earthquake-station rays (Figure 3(d)). Forward modeling is performed by 

summing the perturbation and  background velocities in the blocks along straight raypaths. To 

simulate real data, perturbations are added to each  observation such that 80% of the root mean 

square travel time residual is random gaussian noise. 

To monitor the convergence behavior we have plotted the sum of the squared weighted 

prediction error,  

  (4.1) 
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versus iteration number, k. Using , s s~ and s  to represent the phantom, the reconstructed image 

and the mean value of s tilde respectively, the following quantitative measures of distance from the 

phantom are provided for each synthetic inversion [Herman, 1980]: 
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These represent the normalized root mean squared distance, the average absolute value distance and 

the worst case distance respectively and are listed in Table 1. 
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Comparison 
As a first comparison we show the results of inversion with equal number of iterations 

(labeled ART1 and LSQR1) when no noise is added to the data. In this case we need neither 

regularization nor relaxation. Note in Figure 4(a) and (b) that the reconstruction is nearly perfect for 

both ART1 and LSQR1, but ART1 has outperformed LSQR1  (for the same number of iterations) 

in the lower right corner where the data coverage is more sparse. This is because ART converges 

faster than LSQR in this case. All three distance measures of Table 1 also indicate that ART1 is a 

better reconstruction than LSQR1. In Figures 5(a) and (b) noise (80% of the travel time misfit) is 

introduced and damping is applied but no smoothness constraints are implemented (ART2 and 

LSQR2). Here, using the same damping, the resulting images are identical. The characteristic "salt 

and pepper" degradation appears as noise from the data is projected into the image but the phantom 

is still evident beneath the noise. 

Since there is no widely accepted analytical method for determining the choice of λ, a range 

of values were tried and the best results  (both visually and in terms of the distance measures) were 

obtained for λ = 400. The method of Hoerl et al. [1975], where λ  is chosen to be the ratio of the 

mean square data variance to the mean square variance of the least squares model, produced 

unacceptable results (λ was too small). For the synthetic data cross validatory techniques 

[Titterington, 1985] indicated a choice of λ between 300 and 500, although for the real data 

inversion no optimal choice of λ could be determined. 

Next, smoothing is implemented by constraining the high-pass Laplacian for the LSQR3 

inversion and  applying the complementary low-pass filter between iterations for ART3 (Figure 

6(a) and (b)). In the ART3 case a relaxation of ρ(k) = 0.02 is used with regularization parameter 

adjusted to λ = 65.  Here, even though the solutions predict the data to the same chisq accuracy, 

they appear slightly different, due to the different way the smoothing is performed in each method. 

Table 1 indicates that ART3 is over all slightly closer to the phantom than LSQR3, but has a higher 

worst case, d3. If we apply this same filter but keep ρ(k) = 1.0 with λ = 400.0  as in the previous 

example,  the technique does not converge in 30 iterations. After the first few iterations, the 

smoothing dominates the inversion process, producing successively smoother models which 

converges to a different chisq. Figure 7(a) shows ART4 after 30 iterations. Notice in Table 1 that 

the d1 measure is smaller for ART4 than ART3 but d2 is larger. As a final example, ART5, the 
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relaxation parameter is allowed to decrease between iterations as in (2.4) with  κ1 = 1 ,  κ2 = 30 and 

a suitable reduction in smoothing following (2.6) with κ3 = 30. This results in an image (Figure 7 

(b)) very close to that of ART3 in Figure 6(a) and is indicated as such in Table 1. Since the 

selection of these various parameters (κ1 , κ2 , κ3) requires very careful analysis of many trial 

inversions, we prefer the approach taken in ART3 where the relaxation and regularization is fixed. 

ART5 is presented mainly to show that this approach can be used if desired. 

In Figure 8 we present a plot of the % chisq reduction versus iteration number for each of 

the synthetic inversions. For the case of perfect data, ART1 reduces the chisq faster than LSQR1 

until the 8-th iteration where the respective chisq converges to nearly 100% reduction. In the 

damped case ART2 out performs LSQR2 until 4 iterations when the two methods converge. When 

smoothing is applied in ART3 and constraining in LSQR3 the situation is reversed. Here LSQR3 

appears to have reduced  the chisq faster for the first 3 iterations where the chisq for each merge. 

The chisq reduction for ART4, however, is better than that of LSQR3 for the first 3 iterations, after 

which the smoothing degrades the data predictive nature of the solution. If the relaxation is allowed 

to decay with appropriate decay of smoothing, the chisq of ART5 is made to follow that of ART3. 

Figure 9(a) and (b) displays  the standard error for the inversions in ART3 and LSQR3 of 

Figure 6 respectively. Since the methods of regularization are different in each case, the mini-

inversions and pseudo values calculated will vary accordingly giving rise to different distributions 

of standard errors. Overall, though, the errors are of the same magnitude. In both cases the 

estimated errors are generally larger in the lower right corner where coverage is sparse. 

Real Data: Mount St. Helens 
To illustrate the usage of these techniques on real, 3-dimensional data, results from an 

inversion in the vicinity of Mount St. Helens, Washington, are presented. A geographic plot of the 

target region is displayed in Figure 10  where the 21 stations and 2,023 sources (Figure 11) are 

plotted. Earthquake data were taken from the University of Washington database ranging in time 

from 1972 to 1988. There were 17,659 rays covering the 80 times 80 times 40 km region which 

was partitioned into 2 times 2 km blocks over 10 layers of varying thickness. 

Since data coverage is best between 2-12 km depth, only the four layers spanning this 

region are presented. For the ART case, Figure 12(a-d) a relaxation of rho = .02 and  λ = 260 have 
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been used for 30 iterations where a 24% reduction of chisq was achieved. Figure 13(a-d) shows the 

results of applying LSQR,  where Laplacian smoothing with a damping parameter λ = 1600 was 

used for 40 iterations when the same chisq was reached. Minor differences are evident for the two 

procedures but in general results are nearly the same. Small adjustments in parameters can refine 

this comparison. Figure 14 shows a closeup of layer 2 with prominent geologic features juxtaposed. 

The high velocity regions correlate well with plutonic centers where we would expect rocks to be 

consolidated. Low velocity structures along the St. Helens seismic zone and the Goat Mt complex 

correlates with zones of faulting or intruded magmas where we expect fractured rocks to have 

lower velocities. These results correlate very well with other geophysical measurements, 

particularly aeromagnetic data [Finn and Williams, 1987]. We thus have a high degree of 

confidence in our results. Layers 4 and 5 show a strong low velocity anomaly just south of the 

crater, perhaps indicating the presence of the modern magma source beneath the volcano. For more 

details see Lees and Crosson [Lees and Crosson, 1989].  Future tomographic inversions will  

attempt to delineate the small scale details of the magma chamber. Inversions with the ART 

algorithm produce similar results. 

Conclusions 
We conclude that with careful choice of parameters iterative techniques such as ART and 

projection methods like LSQR produce nearly equivalent results for tomographic inversions using 

seismic travel time data. Both methods can successfully incorporate regularization and various 

approaches to smoothing can be introduced. The ART approach has as its main draw-back that the 

application of smoothing destroys the least squares nature of the solution, although with adequate 

iteration and careful reduction of smoothing this effect may be diminished. The advantage of ART 

is its simplicity and ease of implementation when non-linear constraints are required, or when 

other, unusual a priori information is deemed important for constraining. Both methods have been 

found to work well and produce comparable results for synthetic as well as real data. 
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