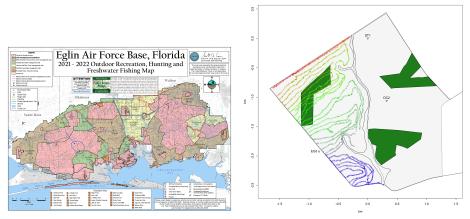
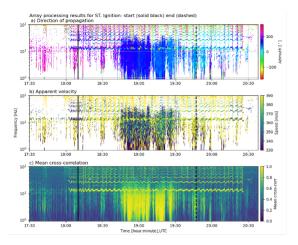

SSA, Baltimore, MD, April, 2025

Inversion of helicopter characteristics using infrasound data

Omar ${\sf Marcillo}^1$ and Jonathan M. ${\sf Lees}^2$

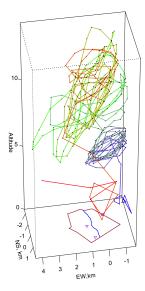

¹Oak Ridge National Laboratory ²University of North Carolina at Chapel Hill

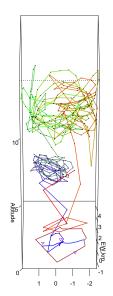

Ground Deployment

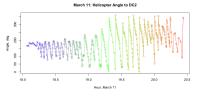
Infrasound Station Deployment and Burn Schedule at Eglin AFB, 2023

Marcillo et al., Applied Acoustics, 2025

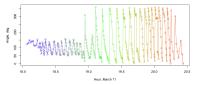
Recent Fire Paper:

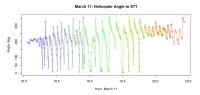

Marcillo, Lees, et al., (2025) Acoustic observations of a prescribed burn, *Appl. Acoust.*, 235, p. 110657, DOI:10.1016/j.apacoust.2025.110657.

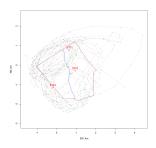

Elgin Helicopter Information

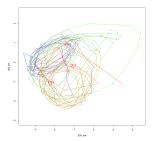

(example from wikipedia)

- Two-blade Bell Long-Range
- Constant 400 RPM
- Fundamental Frequency: $2 \times 400/60 = 13.3$ Hz
- Two-blade tail rotor with 2500 RPM.

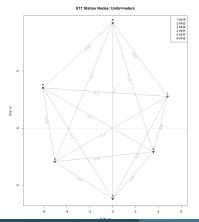


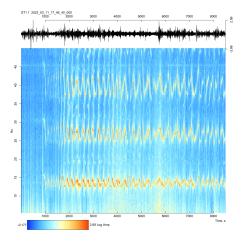



Angle to Helicopter

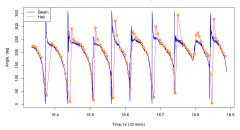


March 11: Helicopter Angle to EG3

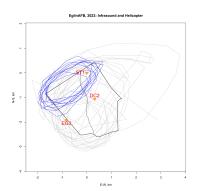

Marcillo and Lees

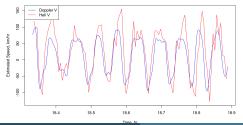

Helicopter Infrasound

April, 2025 6 / 21


6-node Station ST1

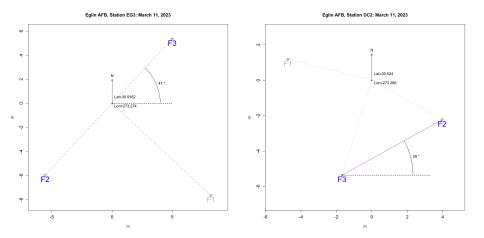
- Six infraBSU sensors in Hex-formation
- Hex-formation, \sim 5m radius
- Centaur digitizer (Nanometrics Inc.)
- 2000 sample/s



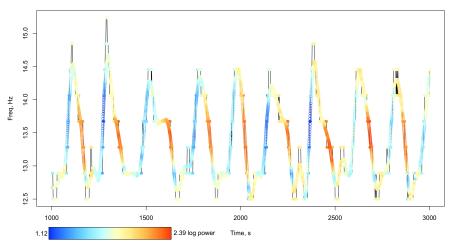


ST1: Beam Angle and Speed V Helicopter

ST1: Beam vs Heli Angle

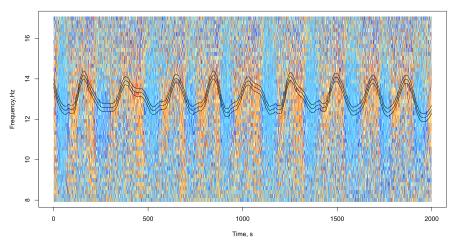


Marcillo and Lees


Helicopter Infrasound

Stations with Two Nodes

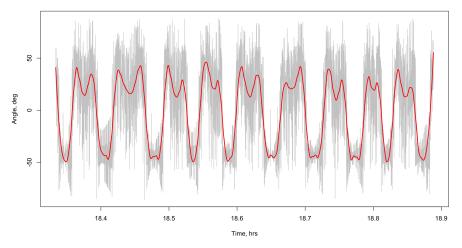
Beam-forming with 2-node stations require special handling to adjust for angle ambiguity and noise.


EG3: Fundamental Mode and Power

Station EG3 Fundamental Helicopter Mode Power

Beam-forming Angle Analysis at EG3

EG3: 2-node Beam Derived Angles



Inspite of noise and ambiguity, there appears to be a reasonable signal.

Marcillo and Lees

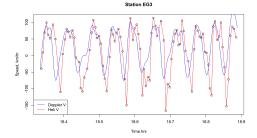
EG3 Angle extraction

Angles are averaged over the fundamental frequency band. Local estimates are smoothed over time.

Marcillo and Lees

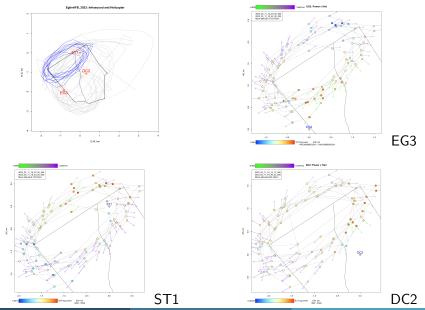
April, 2025 12 / 21

Following Beam forming with 2-node stations:


- Set Frequency range, 8, 17 Hz
- Extract angles from Beamforming at peak power in limited frequency range.
- (Angle at Max peak, might do some averaging)
- Calculate Angle Bias (direction of line connecting 2 nodes)
- Calculate mean angle, should be close to bias
- Smooth time versus angle using loess (span = 0.01)
- Predict new Angle at time values, pp
- Plot Time versus Adjusted Angles
- Add Helocopter angles

Note: Helicopter angles are in degress clockwise from north. Beam angles are degrees ccw from east

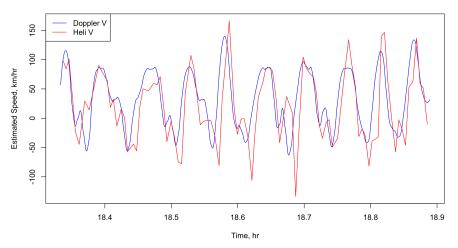
EG3: Angle and Speed vs Heli


Provide the second seco

EG3: Beam vs Heli Angle

Marcillo and Lees

Beam Power and Angles wrt Stations



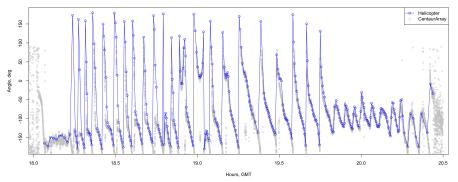
Marcillo and Lees

Helicopter Infrasound

April, 2025 15 / 21

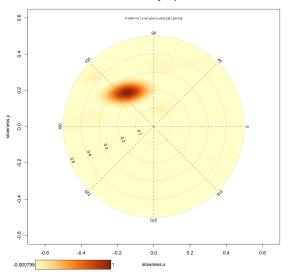
Station DC2

DC2: Heli vs 2-Node Beam

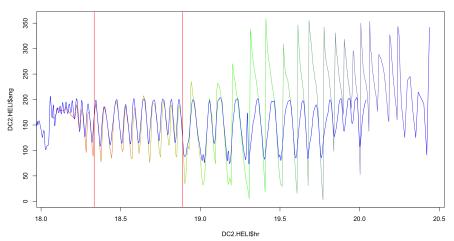

Marcillo and Lees	Helicopter Infrasound	April, 2025 16 / 21

We found that infrasound was effective for estimating various helicopter parameters during overflight at distances of several km.

- Estimation of helicopter azimuth (beam-forming)
- Estimation of helicopter relative speed via doppler
- 6-Node (10m aperature) Station Array very effective
- 2000 Hz Sample Rate provides dense sampling of sound waves
- Smaller 2-node 'array', at lower sample rates, may be effective at extracting some helicopter parameters but these have ambiguities and are noisy
- 3-node arrays will improve estimates considerably


The End

Compare BeamForm with Helicopter GPS


Eglin AFB: Helicopter and Centaur Array Processing March 11, 2023

Beam Forming Example

Grafenberg Array

DC2: BEAM Angle v Helicopter

DC2: Heli vs 2-Node Beam